Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A second polymorph of catena-poly[[(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ -copper(II)]-di- μ-thiocyanato$\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

Shi-Shen Zhang,* Li-Jiang Chen and Yi-Feng Han

Department of Applied Chemistry, Zhejiang Sci-Tech University, Hang Zhou 310018, People's Republic of China, and Engineering Research Center for Eco-Dyeing \& Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
Correspondence e-mail: zhangshishen@126.com

Received 8 December 2010; accepted 12 January 2011
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.076$; data-to-parameter ratio $=14.0$.

In the title coordination polymer, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, the $\mathrm{Cu}^{\text {II }}$ atom is situated on a twofold rotation axis and is coordinated by two N atoms from the bidentate 1,10phenanthroline ligand and four thiocyanate groups to confer a $\mathrm{CuN}_{4} \mathrm{~S}_{2}$ octahedral geometry and resulting in a layer structure extending parallel to (100).

Related literature

For the first polymorph of this composition, see: Breneman \& Parker (1993). For related structures, see: Kulkarni et al. (2002); Morpurgo et al. (1984).

Experimental

Crystal data
$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=359.90$
Monoclinic, C2/c
$a=14.0353$ (13) A
$b=10.3081$ (9) \AA
$c=10.2670$ (9) \AA
$\beta=111.034$ (2) ${ }^{\circ}$

Data collection

Bruker SMART diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.633, T_{\text {max }}=0.755$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 97$ parameters
$w R\left(F^{2}\right)=0.076$
$S=1.08$
1362 reflections

$$
V=1386.4(2) \AA^{3}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=1.87 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.25 \times 0.22 \times 0.15 \mathrm{~mm}$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Qianjiang Talents Project of the Technology Office of Zhejiang Province (grant No. 2009R10029), the National Natural Science Foundation of China (grant No. 20803067) and the Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing \& Finishing Engineering (grant No. ZYG2010019).

[^0]
References

Breneman, G. L. \& Parker, O. J. (1993). Polyhedron, 12, 891-895.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kulkarni, P., Padhye, S., Sinn, E., Anson, C. E. \& Powell, A. K. (2002). Inorg. Chim. Acta, 332, 167-175.
Morpurgo, G. O., Dessy, G. \& Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785-791.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

A second polymorph of catena-poly[[(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right) \operatorname{copper}($ III $\left.)\right]$-di- μ-thiocyanato$\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

S.-S. Zhang, L.-J. Chen and Y.-F. Han

Comment

Phenanthroline and its derivatives have been achieving rapidly increasing attention not only for their potential application as functional materials, but aslo from their intriguing variety of architectures and topologies. 1, 10-Phenanthroline, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as monomers(Breneman et al. 1993), ploymers(Kulkarni et al. 2002; Morpurgo et al. 1984).

The structure of the title compound (I) is illustrated in Fig. 1. the $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two N atoms from1, 10-Phenanthroline ligand, as well as by the two N atoms and two S atoms from four thiocyanate groups to confer a distorted octahedral coordination at the metal centre. Two S atoms occupy the axial position, showing weak interaction of $\mathrm{Cu}-\mathrm{S} 1$ bond [2.952(3)], which give rise to one-dimensional chain along (100), the crystal packing is stabilized by the intermolecular $\pi-\pi$ stacking interaction(Fig. 2).

In contrast to the first polymorph of this composition in which the distance of $\mathrm{Cu}-\mathrm{S}$ bonds are longer [3.163 (2) \AA], and the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}^{\prime}$ angles are nearly linear $\left[170.86(6)^{\circ}\right]$. The $\mathrm{S}-\mathrm{Cu}-\mathrm{N}$ angles in reported complex vary from 73.8 (1) to $99.1(1)^{\circ}$, which make the octahedral geometry of this compound more disordered than the title compoud.

Experimental

The mixture of $\operatorname{CuSCN}(0.0244 \mathrm{~g}, 0.2 \mathrm{mmol}), 1,10-$ Phenanthroline $(0.0132 \mathrm{~g}, 0.1 \mathrm{mmol})$, were placed and sealed in a 10 ml Teflon-lined stainless steel reactor and heated to $160^{\circ} \mathrm{C}$ for 72 h , then cooled down to room temperature at a rate of 5 ${ }^{\circ} \mathrm{C} / 60 \mathrm{~min}$. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 35% yield.

The web of checkcif show one Alert level B(Hirshfeld Test Diff $\mathrm{S} 1-\mathrm{C} 7 . .8 .52 \mathrm{su}$), we think this is the result of the sightly distorted S atom of the thiocyanate group for his weak interaction to the Cu atom.

Refinement

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 ? \AA($ aromatic $)$ and Uĩso(H) $=$ $1.2 \mathrm{Ueq}(\mathrm{C})$

supplementary materials

Figures

Fig. 1. The coordination environment of the title compound

Fig. 2. The crystal packing of the title compound
catena-Poly $\left[\left[\left(1,10-p h e n a n t h r o l i n e-\kappa^{2} N, N^{\prime}\right) \operatorname{copper}(\mathrm{II})\right]\right.$ - di- μ-thiocyanato- $\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$F(000)=724$
$M_{r}=359.90$
Monoclinic, C2/c
Hall symbol: -c 2 yc
$a=14.0353$ (13) \AA
$b=10.3081$ (9) \AA
$c=10.2670(9) \AA$
$\beta=111.034(2)^{\circ}$
$V=1386.4(2) \AA^{3}$
$D_{\mathrm{x}}=1.724 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1647 reflections
$\theta=2.5-27.8^{\circ}$
$\mu=1.87 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, black
$0.25 \times 0.22 \times 0.15 \mathrm{~mm}$
$Z=4$

Data collection

Bruker SMART
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.633, T_{\text {max }}=0.755$
3938 measured reflections
1362 independent reflections
1254 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-12 \rightarrow 5$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.076$
$S=1.08$
1362 reflections
97 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0475 P)^{2}+0.5818 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.33$ e \AA^{-3}
$\Delta \rho_{\min }=-0.31$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0008 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cu1	0.5000	$0.62211(3)$	0.2500	$0.03359(15)$
N2	$0.43016(13)$	$0.49319(16)$	$0.32227(17)$	$0.0407(4)$
N1	$0.56960(11)$	$0.77181(16)$	$0.19112(15)$	$0.0330(3)$
C7	$0.39033(14)$	$0.43783(18)$	$0.38718(19)$	$0.0324(4)$
C6	$0.53802(14)$	$0.88917(17)$	$0.21873(19)$	$0.0326(4)$
C1	$0.64028(15)$	$0.7684(2)$	$0.1322(2)$	$0.0426(5)$
H1	0.6632	0.6884	0.1136	0.051^{*}
C4	$0.57499(16)$	$1.0064(2)$	$0.1877(2)$	$0.0415(5)$
C3	$0.64909(17)$	$0.9994(2)$	$0.1252(2)$	$0.0488(6)$
H3	0.6761	1.0749	0.1027	0.059^{*}
C2	$0.68083(19)$	$0.8814(2)$	$0.0979(3)$	$0.0507(6)$
H2	0.7296	0.8759	0.0562	0.061^{*}
S1	$0.33300(4)$	$0.36018(5)$	$0.47588(6)$	$0.04095(18)$
C5	$0.5358(2)$	$1.12518(19)$	$0.2202(3)$	$0.0548(6)$
H5	0.5599	1.2038	0.1999	0.066^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0418(2)$	$0.0268(2)$	$0.0433(2)$	0.000	$0.02887(17)$	0.000
N 2	$0.0479(10)$	$0.0375(9)$	$0.0432(9)$	$-0.0075(8)$	$0.0242(8)$	$0.0008(7)$
N 1	$0.0348(8)$	$0.0338(8)$	$0.0351(8)$	$-0.0009(6)$	$0.0182(6)$	$0.0016(6)$
C 7	$0.0353(9)$	$0.0279(9)$	$0.0358(9)$	$-0.0008(8)$	$0.0148(8)$	$-0.0027(7)$
C 6	$0.0359(10)$	$0.0312(9)$	$0.0302(9)$	$-0.0021(7)$	$0.0111(8)$	$0.0015(7)$
C 1	$0.0424(10)$	$0.0461(12)$	$0.0487(11)$	$-0.0017(9)$	$0.0280(9)$	$0.0019(9)$
C 4	$0.0451(11)$	$0.0366(11)$	$0.0391(10)$	$-0.0057(9)$	$0.0107(9)$	$0.0052(8)$
C 3	$0.0515(12)$	$0.0467(13)$	$0.0501(12)$	$-0.0150(10)$	$0.0206(10)$	$0.0097(10)$
C 2	$0.0481(12)$	$0.0637(16)$	$0.0498(13)$	$-0.0116(10)$	$0.0293(11)$	$0.0039(10)$
S 1	$0.0430(3)$	$0.0442(3)$	$0.0433(3)$	$-0.0070(2)$	$0.0249(2)$	$0.0026(2)$
C 5	$0.0705(17)$	$0.0301(11)$	$0.0589(15)$	$-0.0062(9)$	$0.0174(12)$	$0.0025(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

Cu1-N2	1.9492 (16)	C1-C2	1.397 (3)
$\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	1.9492 (16)	C1-H1	0.9300
Cu1-N1	2.0310 (15)	C4-C3	1.406 (3)
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	2.0310 (15)	C4-C5	1.430 (3)
N2-C7	1.162 (3)	C3-C2	1.359 (3)
N1-C1	1.335 (2)	C3-H3	0.9300
N1-C6	1.353 (2)	C2-H2	0.9300
C7-S1	1.6259 (19)	C5-C5 ${ }^{\text {i }}$	1.351 (6)
C6-C4	1.397 (3)	C5-H5	0.9300
C6- $\mathrm{C}^{\text {i }}$	1.430 (4)		
N2-Cu1-N2 ${ }^{\text {i }}$	94.04 (10)	N1-C1-H1	119.0
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	173.03 (6)	C2-C1-H1	119.0
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	92.49 (7)	C6-C4-C3	117.1 (2)
N2-Cu1-N1 ${ }^{\text {i }}$	92.49 (7)	C6-C4-C5	118.8 (2)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 1^{\text {i }}$	173.03 (6)	C3-C4-C5	124.1 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	81.10 (9)	C2-C3-C4	119.4 (2)
C7-N2-Cu1	164.69 (16)	C2-C3-H3	120.3
C1-N1-C6	118.10 (17)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3
C1-N1-Cu1	129.05 (15)	C3-C2-C1	120.1 (2)
C6-N1-Cu1	112.85 (12)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0
N2-C7-S1	179.12 (18)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0
N1-C6-C4	123.34 (18)	C5 ${ }^{\text {i }}$ C5- C 4	121.13 (13)
N1-C6-C6 ${ }^{\text {i }}$	116.59 (10)	C5 ${ }^{\text {i }}$ C5- 55	119.4
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{C}^{\text {i }}$	120.07 (12)	C4-C5-H5	119.4
N1-C1-C2	121.9 (2)		

Symmetry codes: (i) $-x+1, y,-z+1 / 2$.

sup-4

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5084).

